- Computational scientist @ Argonne National Laboratory
- Working on:
- 🧪 {AI, HPC} for science
- 🚀 training large models on supercomputers
MProt-DPO: Breaking the ExaFLOPS Barrier for Multimodal Protein Design Workflows with Direct Preference Optimization G. Dharuman, K. Hippe, A. Brace, S. Foreman, et al. @ SC’24
Intro to HPC Bootcamp: Engaging New Communities Through Energy Justice Projects
Journal of Computational Science, 2024Thorough Characterization and Analysis of Large Transformer Model Training At-Scale
Proc. ACM Meas. Anal. Comput. Syst. 03/2024MLMC: Machine Learning Monte Carlo for Lattice Gauge Theory
S. Foreman et al. Lattice, 2023 (Proceedings), 12/2023Protein Generation via Genome-scale Language Models with Bio-physical Scoring
@ SC’23, 11/2023DeepSpeed4Science Initiative: Enabling Large-Scale Scientific Discovery […]
@ NeurIPS 2023 AI For Science Workshop, 10/2023Comprehensive Performance Study of LLMs on Novel AI Accelerators
M. Emani, S. Foreman, et al., IPDPS 2024, 10/2023Exploratory Analysis of Climate Data with
ClimRR
S. Foreman, Intro to HPC Bootcamp @ NERSC, 08/2023GenSLMs: Genome-scale language models reveal SARS-Cov-2 evolutionary dynamics
@ SC’22 10/2022Lattice QCD and Particle Physics
A.S. Kronfeld et al., 07/2022Applications of ML to Lattice QFT
D. Boyda, S. Calí, S. Foreman, et al., [arXiv:2202.05838], 02/2022LeapFrogLayers: Trainable Framework for Effective Sampling
S. Foreman, X.Y. Jin, J.C. Osborn, Lattice, 2021HMC with Normalizing Flows [slides]
S. Foreman et al., Lattice, 2021Deep Learning Hamiltonian Monte Carlo [+ poster]
S. Foreman, X.Y. Jin, & J.C. Osborn, @ SimDL Workshop @ ICLR, 2021Machine Learning and Neural Networks for Field Theory
S. Foreman, X.Y. Jin, & J.C. Osborn, SnowMass, 2020Examples of renormalization group transformations for image sets
S. Foreman et al., Physical Review E., 2018RG inspired Machine Learning for lattice field theory
S. Foreman et al., arXiv:1710.02079, 2017Large Energy Density in Three-Plate Nanocapacitors due to Coulomb Blockade
S. Foreman et al., J. Appl. Phys, 2018
References
- References:
- (Dharuman et al. 2024)
- (Parete-Koon et al. 2024)
- (Cheng et al. 2024)
- (Zvyagin et al. 2023)
- (Dharuman et al. 2023)
- (Emani et al. 2023)
- (Song et al. 2023)
- (Sam Foreman, Jin, and Osborn)
- (Boyda et al. 2022)
- (Kronfeld et al. 2022)
- (Shanahan, Terao, and Whiteson 2022)
- (S. Foreman, Jin, and Osborn 2022)
- (Sam Foreman et al. 2021)
- (Sam Foreman, Jin, and Osborn 2020)
- (S. A. Foreman 2019)
- (Sam Foreman et al. 2018)
- (Hubler et al. 2018)
- (Samuel Foreman et al. 2018)
- (Liu et al. 2017)
- (Deamont and Foreman 2014)
Convert from HTML to slideshow version of a page by appending /slides
to the end of its URL, e.g.
What | Where | When |
---|---|---|
Parallel Training Methods | Intro to AI-driven Science on Supercomputers | 2024-11-05 |
AuroraGPT | ALCF Hands-on HPC Workshop | 2024-10-30 |
Deep Learning and Foundation Models at Scale | ALCF Hands-on HPC Workshop | 2024-10-29 |
AuroraGPT | HPC User Forum Fall ’24 | 2024-09-04 |
Training LLMs at Scale | ATPESC 2024 | 2024-08-09 |
LLMs on Polaris | SciFM Summer School ’24 | 2024-07-17 |
MLMC: Machine Learning Monte Carlo | Lattice 2023 (Fermilab) | 2023-07-31 |
📆 2024
📆 2023
📆 2022
📆 2021
📆 2020
What | When |
---|---|
🫥 svgbob | 2024-11-15 |
💾 Converting Checkpoints | 2024-10-17 |
🏔️ Spike Skipper | 2024-09-17 |
🍋 ezpz @ ALCF
|
2024-08-23 |
ezpz-v1 | 2024-08-23 |
💅 How to Make Dope Slides | 2024-08-13 |
🎰 Deterministic flash-attn
|
2024-06-17 |
📸 flash-attn on Sunspot
|
2024-06-17 |
🏎️ Megatron-DeepSpeed on Intel XPU | 2024-06-15 |
🐛 mpi4py bug on Sunspot
|
2024-05-25 |
🎲 MCMC + Diffusion Sampling | 2024-04-15 |
⏰ Starting Up Distributed Training on Aurora | 2024-03-21 |
🚂 Loooooooong Sequence Lengths | 2024-02-12 |
l2hmc Example: 2D U(1)
|
2024-02-12 |
🎢 l2hmc-qcd Example: 2D U(1)
|
2023-12-14 |
🔳 l2hmc-qcd Example: 4D SU(3)
|
2023-12-06 |
🎪 Events
Organizer for:
SC24 Workshop: High Performance Python for Science at Scale (HPPSS), November 2024
SC23 Workshop: High Performance Python for Science at Scale (HPPSS), November 2023
Machine Learning and Quantum Computing for Earth Sciences at 17th U. S. National Congress on Computational Mechanics, July 2023
👔 Employment
Position | @ | Start | End |
---|---|---|---|
Assistant Computational Scientist | ALCF | 2022 | – |
Postdoc | ALCF | 2019 | 2022 |
Graduate Researcher | ANL | 2018 | 2019 |