⏰ Starting Up Distributed Training on Aurora

AuroraGPT
Author
Affiliation
Published

March 21, 2024

Application Startup Time
  • Request:

    Hi Sam and Corey,

    Thanks for your comments on measuring the application start up time last week.

    Typically, we report the throughput performance after the start-up and warm-up during the “steady” state of the training.

    We have a few follow-up questions so that we establish a methodology to address the issue brought up by Argonne.

    1. We can set a few timestamps in the model scripts and job scripts used for the queue submission: Job script:

      Time stamp A:  
      <actual python command using mpiexec>
      
      Inside the model script:  
      main()  
      Timestamp B:  
      [...]
      Timestamp C:  
      First training steps and onwards.  

      By startup time, do you mean measuring time difference between A and C or B and C?

    1. Will the measurement methodology be the same for distributed training?
      For examples, we can measure the start-up time for the rank0?
    1. If we need to report the startup time for the DL applications, do we need to collect measurements using the actual Aurora NRE workloads or some small benchmarking test cases?

      For example, we can try to recreate the typical start-up scenarios, like library imports, and measure those separately as shown below.

      Job script:
      Time stamp A:
      <actual python command using mpiexec>
      
      Time stamp B:
       import torch
      Time stamp C
      import IPEX
      Time stamp D
      Etc...

      If you have any other scenarios, please feel free to suggest.

Response

  1. In Measuring / Calculating Startup Time,I provide a summary of how the startup time is identified and calculated.

  2. I’m not sure exactly I understand

    Will the measurement methodology be the same for distributed training? For examples, we can measure the start-up time for the rank0?

    The startup time is being measured for distributed training (logs only created on RANK = 0)

  3. I discuss in Minimal Working Example a minimal example that can be used to measure the startup times.

    • This is using a library I’ve been working on, ezpz that is designed to help simplify the process of setting up / initializing distributed training across many GPUs.

Measuring / Calculating Startup Time

  • The startup timing was identified by parsing the logfiles from existing runs and calculating the difference \delta t = t_{1} - t_{0},

    • t_{0} is the time stamp at the very beginning of the shell script (defined here) which then launches

      mpiexec ${mpi-args} python3 [...]
      • t_{0} appears in the logfile as:

        Job started at: 2023-11-02-183323 on x3004c0s13b0n0
    • t_{1} is identified as the timestamp associated with the completion of the first training step

      • t_{1} appears in the logfile as:

        [2023-11-02 18:34:13,122] [INFO] [logging.py:96:log_dist] [Rank 0] step=0, skipped=0, lr=[0.0, 0.0], mom=[(0.9, 0.999), (0.9, 0.999)]
  • Below is an example of the bash script use to parse the logfiles and identify these timestamps:

      $ for f in $(tail -5 logfiles) ; do echo $f; cat $f | grep -E "Job started|step=0\," | uniq ; echo "\n" ; done
      /lus/grand/projects/datascience/foremans/locations/polaris/projects/argonne-lcf/Megatron-DeepSpeed/outputs/gpt_actCkpt_GPT1T_4L_z1_seqlen2048_mp8_pp2_sp1_nl4_hs25600_gb16_mb1/logs/foremans-x3004c0s13b0n0-nhosts4-ngpu16-2023-11-02-183323.log
      Job started at: 2023-11-02-183323 on x3004c0s13b0n0
      [2023-11-02 18:34:13,122] [INFO] [logging.py:96:log_dist] [Rank 0] step=0, skipped=0, lr=[0.0, 0.0], mom=[(0.9, 0.999), (0.9, 0.999)]
    
      /lus/grand/projects/datascience/foremans/locations/polaris/projects/argonne-lcf/Megatron-DeepSpeed/outputs/gpt_SP_actCkpt_GPT125M_z0_seqlen2048_mp16_pp1_sp1_nl12_hs768_gb1_mb1/logs/foremans-x3015c0s37b0n0-nhosts4-ngpu16-2023-11-02-184240.log
      Job started at: 2023-11-02-184240 on x3015c0s37b0n0
    
      /lus/grand/projects/datascience/foremans/locations/polaris/projects/argonne-lcf/Megatron-DeepSpeed/outputs/gpt_SP_actCkpt_GPT125M_z0_seqlen2048_mp16_pp1_sp1_nl12_hs768_gb1_mb1/logs/foremans-x3015c0s37b0n0-nhosts4-ngpu16-2023-11-02-184259.log
      Job started at: 2023-11-02-184259 on x3015c0s37b0n0
      [2023-11-02 18:43:23,385] [INFO] [logging.py:96:log_dist] [Rank 0] step=0, skipped=0, lr=[0.0, 0.0], mom=[(0.9, 0.999), (0.9, 0.999)]
    
      /lus/grand/projects/datascience/foremans/locations/polaris/projects/argonne-lcf/Megatron-DeepSpeed/outputs/gpt_SP_actCkpt_GPT125M_z0_seqlen2048_mp16_pp1_sp1_nl12_hs768_gb1_mb1/logs/foremans-x3004c0s13b0n0-nhosts4-ngpu16-2023-11-02-184407.log
      Job started at: 2023-11-02-184407 on x3004c0s13b0n0
      [2023-11-02 18:44:32,804] [INFO] [logging.py:96:log_dist] [Rank 0] step=0, skipped=0, lr=[0.0, 0.0], mom=[(0.9, 0.999), (0.9, 0.999)]
    
      /lus/grand/projects/datascience/foremans/locations/polaris/projects/argonne-lcf/Megatron-DeepSpeed/outputs/gpt_actCkpt_GPT1T_4L_z1_seqlen2048_mp8_pp2_sp1_nl4_hs25600_gb16_mb2/logs/foremans-x3108c0s25b1n0-nhosts2-ngpu8-2023-11-02-192739.log
      Job started at: 2023-11-02-192739 on x3108c0s25b1n0
Table 1: Startup times on Perlmutter
**** model_size world_size start stop t0 t1 dt
foremans-nid008217-nhosts2-ngpu8-2023-10-05-191101.log GPT1T_1L 8 2023-10-05-191101 2023-10-05-191215 191101 191215 114
foremans-nid008217-nhosts2-ngpu8-2023-10-05-191400.log GPT1T_1L 8 2023-10-05-191400 2023-10-05-191511 191400 191511 111
foremans-nid008217-nhosts2-ngpu8-2023-10-05-191707.log GPT1T_1L 8 2023-10-05-191707 2023-10-05-191817 191707 191817 110
foremans-nid008553-nhosts2-ngpu8-2023-10-15-114506.log GPT1T_2L 8 2023-10-15-114506 2023-10-15-114616 114506 114616 110
foremans-nid008572-nhosts2-ngpu8-2023-10-15-133531.log GPT2_7B 8 2023-10-15-133531 2023-10-15-133745 133531 133745 214
foremans-nid008572-nhosts2-ngpu8-2023-10-15-135041.log GPT2_7B 8 2023-10-15-135041 2023-10-15-135255 135041 135255 214
foremans-nid008572-nhosts2-ngpu8-2023-10-15-140806.log GPT2_7B 8 2023-10-15-140806 2023-10-15-141236 140806 141236 430
foremans-nid008572-nhosts2-ngpu8-2023-10-15-143120.log GPT2_7B 8 2023-10-15-143120 2023-10-15-143655 143120 143655 535
foremans-nid008268-nhosts2-ngpu8-2023-10-15-154337.log GPT2_7B 8 2023-10-15-154337 2023-10-15-154446 154337 154446 109
foremans-nid008268-nhosts2-ngpu8-2023-10-15-154943.log GPT1T_1L 8 2023-10-15-154943 2023-10-15-155317 154943 155317 374
foremans-nid008268-nhosts2-ngpu8-2023-10-15-162315.log GPT1T_1L 8 2023-10-15-162315 2023-10-15-162441 162315 162441 126
foremans-login12-nhosts2-ngpu8-2023-10-15-180714.log GPT2_7B 8 2023-10-15-180714 2023-10-15-180805 180714 180805 91
foremans-login12-nhosts2-ngpu8-2023-10-15-181733.log GPT2_7B 8 2023-10-15-181733 2023-10-15-181834 181733 181834 101
foremans-login12-nhosts2-ngpu8-2023-10-15-182228.log GPT1T_1L 8 2023-10-15-182228 2023-10-15-183031 182228 183031 803
foremans-login12-nhosts2-ngpu8-2023-10-15-183345.log GPT1T_2L 8 2023-10-15-183345 2023-10-15-183750 183345 183750 405
foremans-login12-nhosts2-ngpu8-2023-10-15-184442.log GPT1T_2L 8 2023-10-15-184442 2023-10-15-184727 184442 184727 285
foremans-login12-nhosts2-ngpu8-2023-10-15-185952.log GPT1T_1L 8 2023-10-15-185952 2023-10-15-190046 185952 190046 4094
foremans-nid008344-nhosts2-ngpu8-2023-10-15-191508.log GPT2_7B 8 2023-10-15-191508 2023-10-15-191608 191508 191608 100
foremans-nid008344-nhosts2-ngpu8-2023-10-15-192404.log GPT2_7B 8 2023-10-15-192404 2023-10-15-192504 192404 192504 100
foremans-nid008344-nhosts2-ngpu8-2023-10-15-193041.log GPT2_7B 8 2023-10-15-193041 2023-10-15-193137 193041 193137 96
foremans-nid008344-nhosts2-ngpu8-2023-10-15-193448.log GPT2_7B 8 2023-10-15-193448 2023-10-15-193540 193448 193540 92
foremans-login12-nhosts4-ngpu16-2023-10-15-195802.log GPT1T_1L 16 2023-10-15-195802 2023-10-15-195904 195802 195904 102
foremans-login12-nhosts4-ngpu16-2023-10-15-200019.log GPT2_7B 16 2023-10-15-200019 2023-10-15-200258 200019 200258 239
foremans-login12-nhosts4-ngpu16-2023-10-15-200902.log GPT2_7B 16 2023-10-15-200902 2023-10-15-201239 200902 201239 337
foremans-login12-nhosts4-ngpu16-2023-10-15-201524.log GPT2_7B 16 2023-10-15-201524 2023-10-15-201612 201524 201612 88
foremans-login12-nhosts4-ngpu16-2023-10-15-201834.log GPT2_7B 16 2023-10-15-201834 2023-10-15-201923 201834 201923 89
foremans-login12-nhosts4-ngpu16-2023-10-15-202402.log GPT2_7B 16 2023-10-15-202402 2023-10-15-202501 202402 202501 99
foremans-login12-nhosts4-ngpu16-2023-10-15-202606.log GPT2_7B 16 2023-10-15-202606 2023-10-15-202713 202606 202713 107
foremans-nid008344-nhosts2-ngpu8-2023-10-16-084033.log GPT1T_1L 8 2023-10-16-084033 2023-10-16-084212 84033 84212 179
foremans-nid008344-nhosts2-ngpu8-2023-10-16-084628.log GPT1T_1L 8 2023-10-16-084628 2023-10-16-084728 84628 84728 100
foremans-nid008344-nhosts2-ngpu8-2023-10-16-085401.log GPT1T_1L 8 2023-10-16-085401 2023-10-16-085505 85401 85505 104
foremans-nid008344-nhosts2-ngpu8-2023-10-16-090142.log GPT1T_1L 8 2023-10-16-090142 2023-10-16-090305 90142 90305 163
foremans-nid008344-nhosts2-ngpu8-2023-10-16-093404.log actCkpt_GPT13B 8 2023-10-16-093404 2023-10-16-093504 93404 93504 100
foremans-nid008572-nhosts4-ngpu16-2023-10-16-101437.log GPT1T_1L 16 2023-10-16-101437 2023-10-16-101549 101437 101549 112
foremans-nid008396-nhosts4-ngpu16-2023-10-16-101512.log GPT1T_1L 16 2023-10-16-101512 2023-10-16-101615 101512 101615 103
foremans-nid008396-nhosts4-ngpu16-2023-10-16-102217.log actCkpt_GPT25B 16 2023-10-16-102217 2023-10-16-102452 102217 102452 235
foremans-nid008396-nhosts4-ngpu16-2023-10-16-102750.log actCkpt_GPT25B 16 2023-10-16-102750 2023-10-16-103243 102750 103243 493
foremans-nid008572-nhosts4-ngpu16-2023-10-16-103113.log actCkpt_GPT25B 16 2023-10-16-103113 2023-10-16-103237 103113 103237 124
foremans-nid008396-nhosts4-ngpu16-2023-10-16-104037.log actCkpt_GPT25B 16 2023-10-16-104037 2023-10-16-104148 104037 104148 111
foremans-nid008396-nhosts4-ngpu16-2023-10-16-104819.log actCkpt_GPT25B 16 2023-10-16-104819 2023-10-16-110002 104819 110002 5183
foremans-nid008396-nhosts4-ngpu16-2023-10-16-110119.log actCkpt_GPT25B 16 2023-10-16-110119 2023-10-16-110225 110119 110225 106
foremans-nid008701-nhosts4-ngpu16-2023-10-16-113715.log actCkpt_GPT25B 16 2023-10-16-113715 2023-10-16-113824 113715 113824 109
foremans-nid008701-nhosts4-ngpu16-2023-10-16-114236.log GPT1T_1L 16 2023-10-16-114236 2023-10-16-114338 114236 114338 102
foremans-nid008701-nhosts4-ngpu16-2023-10-16-114610.log GPT1T_1L 16 2023-10-16-114610 2023-10-16-114711 114610 114711 101
foremans-nid008701-nhosts4-ngpu16-2023-10-16-114819.log GPT1T_2L 16 2023-10-16-114819 2023-10-16-114953 114819 114953 134
foremans-nid008701-nhosts4-ngpu16-2023-10-16-131058.log GPT1T_2L 16 2023-10-16-131058 2023-10-16-131203 131058 131203 145
foremans-nid008576-nhosts1-ngpu4-2023-10-16-151427.log GPT1T_1L 4 2023-10-16-151427 2023-10-16-151600 151427 151600 173
foremans-nid008576-nhosts1-ngpu4-2023-10-16-152528.log GPT1T_1L 4 2023-10-16-152528 2023-10-16-152640 152528 152640 112
foremans-nid008224-nhosts1-ngpu4-2023-10-16-175717.log GPT1T_1L 4 2023-10-16-175717 2023-10-16-175829 175717 175829 112
foremans-nid008224-nhosts1-ngpu4-2023-10-16-180457.log GPT1T_1L 4 2023-10-16-180457 2023-10-16-180605 180457 180605 148
foremans-nid008224-nhosts1-ngpu4-2023-10-16-183116.log GPT1T_1L 4 2023-10-16-183116 2023-10-16-183216 183116 183216 100
foremans-nid008224-nhosts1-ngpu4-2023-10-16-183921.log GPT1T_1L 4 2023-10-16-183921 2023-10-16-184033 183921 184033 112
foremans-nid008237-nhosts1-ngpu4-2023-10-16-215614.log GPT1T_1L 4 2023-10-16-215614 2023-10-16-215815 215614 215815 201
foremans-nid008385-nhosts1-ngpu4-2023-10-17-052944.log GPT1T_1L 4 2023-10-17-052944 2023-10-17-053139 52944 53139 195
foremans-nid008385-nhosts1-ngpu4-2023-10-17-053529.log GPT1T_1L 4 2023-10-17-053529 2023-10-17-053650 53529 53650 121
foremans-nid008385-nhosts1-ngpu4-2023-10-17-053910.log GPT1T_1L 4 2023-10-17-053910 2023-10-17-054120 53910 54120 210
foremans-nid008385-nhosts1-ngpu4-2023-10-17-054238.log GPT2_7B 4 2023-10-17-054238 2023-10-17-054346 54238 54346 108
foremans-nid008385-nhosts1-ngpu4-2023-10-17-060418.log GPT1T_1L 4 2023-10-17-060418 2023-10-17-060600 60418 60600 182
foremans-nid008385-nhosts1-ngpu4-2023-10-17-061514.log GPT1T_1L 4 2023-10-17-061514 2023-10-17-061653 61514 61653 139
foremans-nid008385-nhosts1-ngpu4-2023-10-17-062102.log GPT1T_1L 4 2023-10-17-062102 2023-10-17-062252 62102 62252 150
foremans-nid008385-nhosts1-ngpu4-2023-10-17-062445.log GPT1T_1L 4 2023-10-17-062445 2023-10-17-062720 62445 62720 275
foremans-nid008333-nhosts2-ngpu8-2023-10-17-064643.log GPT1T_1L 8 2023-10-17-064643 2023-10-17-064848 64643 64848 205
foremans-nid008333-nhosts2-ngpu8-2023-10-17-065806.log GPT1T_2L 8 2023-10-17-065806 2023-10-17-070003 65806 70003 4197
foremans-nid008333-nhosts2-ngpu8-2023-10-17-075152.log GPT1T_2L 8 2023-10-17-075152 2023-10-17-075502 75152 75502 350
foremans-nid008333-nhosts2-ngpu8-2023-10-17-080059.log GPT1T_2L 8 2023-10-17-080059 2023-10-17-080434 80059 80434 375
foremans-nid008333-nhosts2-ngpu8-2023-10-17-081404.log GPT1T_2L 8 2023-10-17-081404 2023-10-17-081920 81404 81920 516
foremans-nid008228-nhosts1-ngpu4-2023-10-17-090344.log GPT1T_1L 4 2023-10-17-090344 2023-10-17-090714 90344 90714 370
foremans-nid008228-nhosts1-ngpu4-2023-10-17-100759.log GPT1T_1L 4 2023-10-17-100759 2023-10-17-100957 100759 100957 198
foremans-nid008404-nhosts4-ngpu16-2023-10-17-182501.log GPT1T_1L 16 2023-10-17-182501 2023-10-17-184001 182501 184001 1500
foremans-nid008404-nhosts4-ngpu16-2023-10-17-193736.log GPT1T_1L 16 2023-10-17-193736 2023-10-17-193856 193736 193856 120
foremans-nid008404-nhosts4-ngpu16-2023-10-17-195432.log GPT1T_1L 16 2023-10-17-195432 2023-10-17-195536 195432 195536 104
foremans-nid008404-nhosts4-ngpu16-2023-10-17-201659.log GPT1T_2L 16 2023-10-17-201659 2023-10-17-201823 201659 201823 164
foremans-nid008404-nhosts4-ngpu16-2023-10-17-202949.log GPT1T_2L 16 2023-10-17-202949 2023-10-17-203054 202949 203054 105
foremans-nid008404-nhosts4-ngpu16-2023-10-17-205848.log GPT1T_1L 16 2023-10-17-205848 2023-10-17-205952 205848 205952 104
foremans-nid008577-nhosts8-ngpu32-2023-10-17-213244.log GPT1T_1L 32 2023-10-17-213244 2023-10-17-213406 213244 213406 162
foremans-nid008577-nhosts8-ngpu32-2023-10-17-213558.log GPT1T_1L 32 2023-10-17-213558 2023-10-17-213720 213558 213720 162
foremans-nid008577-nhosts8-ngpu32-2023-10-17-214900.log GPT1T_2L 32 2023-10-17-214900 2023-10-17-214959 214900 214959 59
foremans-nid008577-nhosts8-ngpu32-2023-10-17-215201.log GPT1T_2L 32 2023-10-17-215201 2023-10-17-215309 215201 215309 108
foremans-nid008577-nhosts8-ngpu32-2023-10-17-215612.log GPT1T_2L 32 2023-10-17-215612 2023-10-17-215726 215612 215726 114
foremans-nid008577-nhosts8-ngpu32-2023-10-17-215938.log GPT1T_2L 32 2023-10-17-215938 2023-10-17-220044 215938 220044 4106
foremans-nid008529-nhosts8-ngpu32-2023-10-18-110001.log GPT1T_4L 32 2023-10-18-110001 2023-10-18-110143 110001 110143 142
foremans-nid008529-nhosts8-ngpu32-2023-10-18-110424.log GPT1T_8L 32 2023-10-18-110424 2023-10-18-110550 110424 110550 126
foremans-nid008244-nhosts4-ngpu16-2023-10-18-110821.log GPT1T_8L 16 2023-10-18-110821 2023-10-18-110952 110821 110952 131
foremans-nid008529-nhosts8-ngpu32-2023-10-18-111345.log GPT1T_8L 32 2023-10-18-111345 2023-10-18-111458 111345 111458 113
foremans-nid008197-nhosts16-ngpu64-2023-10-18-112531.log GPT1T_16L 64 2023-10-18-112531 2023-10-18-112728 112531 112728 197
foremans-nid008456-nhosts16-ngpu64-2023-10-18-113119.log GPT1T_16L 64 2023-10-18-113119 2023-10-18-113343 113119 113343 224
foremans-nid008244-nhosts4-ngpu16-2023-10-18-113131.log GPT1T_4L 16 2023-10-18-113131 2023-10-18-113257 113131 113257 126
foremans-nid008244-nhosts4-ngpu16-2023-10-18-113920.log GPT1T_4L 16 2023-10-18-113920 2023-10-18-114157 113920 114157 237
foremans-nid008197-nhosts16-ngpu64-2023-10-18-114549.log GPT1T_16L 64 2023-10-18-114549 2023-10-18-114721 114549 114721 172
foremans-nid008456-nhosts16-ngpu64-2023-10-18-114636.log GPT1T_16L 64 2023-10-18-114636 2023-10-18-114805 114636 114805 169
foremans-nid008244-nhosts4-ngpu16-2023-10-18-115808.log GPT1T_4L 16 2023-10-18-115808 2023-10-18-120146 115808 120146 4338
foremans-nid008456-nhosts16-ngpu64-2023-10-18-123039.log GPT1T_16L 64 2023-10-18-123039 2023-10-18-123221 123039 123221 182
foremans-nid008389-nhosts2-ngpu8-2023-10-18-123135.log GPT1T_4L 8 2023-10-18-123135 2023-10-18-123300 123135 123300 165
foremans-nid008244-nhosts4-ngpu16-2023-10-18-123206.log GPT1T_4L 16 2023-10-18-123206 2023-10-18-123352 123206 123352 146
foremans-nid008456-nhosts16-ngpu64-2023-10-18-125022.log GPT1T_16L 64 2023-10-18-125022 2023-10-18-125146 125022 125146 124
foremans-nid008256-nhosts8-ngpu32-2023-10-22-122736.log GPT1T_8L 32 2023-10-22-122736 2023-10-22-122844 122736 122844 108
foremans-nid008256-nhosts8-ngpu32-2023-10-22-123824.log GPT1T_8L 32 2023-10-22-123824 2023-10-22-123945 123824 123945 121
foremans-nid008256-nhosts8-ngpu32-2023-10-22-130148.log GPT1T_8L 32 2023-10-22-130148 2023-10-22-130256 130148 130256 108
foremans-nid008256-nhosts8-ngpu32-2023-10-22-131746.log GPT1T_8L 32 2023-10-22-131746 2023-10-22-131909 131746 131909 163
foremans-nid008256-nhosts8-ngpu32-2023-10-22-132700.log GPT1T_8L 32 2023-10-22-132700 2023-10-22-132817 132700 132817 117
foremans-nid008256-nhosts8-ngpu32-2023-10-22-133459.log GPT1T_8L 32 2023-10-22-133459 2023-10-22-133708 133459 133708 249
foremans-nid008380-nhosts4-ngpu16-2023-10-22-175049.log actCkpt_GPT25B 16 2023-10-22-175049 2023-10-22-175230 175049 175230 181
foremans-nid008649-nhosts4-ngpu16-2023-10-22-192352.log GPT1T_4L 16 2023-10-22-192352 2023-10-22-192530 192352 192530 178
foremans-nid008212-nhosts16-ngpu64-2023-10-23-081527.log GPT1T_8L 64 2023-10-23-081527 2023-10-23-081702 81527 81702 175
foremans-nid008344-nhosts2-ngpu8-2023-10-23-091436.log GPT1T_2L 8 2023-10-23-091436 2023-10-23-091610 91436 91610 174
foremans-nid008197-nhosts32-ngpu128-2023-10-24-102617.log GPT1T_32L 128 2023-10-24-102617 2023-10-24-102826 102617 102826 209
foremans-nid008192-nhosts64-ngpu256-2023-10-24-191748.log GPT1T_64L 256 2023-10-24-191748 2023-10-24-192021 191748 192021 273
foremans-nid008192-nhosts128-ngpu512-2023-10-24-201243.log GPT1T_128L 512 2023-10-24-201243 2023-10-24-201629 201243 201629 386
foremans-nid008192-nhosts128-ngpu512-2023-10-26-005401.log GPT1T_128L 512 2023-10-26-005401 2023-10-26-005811 5401 5811 410
foremans-nid008192-nhosts32-ngpu128-2023-10-26-082710.log GPT1T_32L 128 2023-10-26-082710 2023-10-26-083049 82710 83049 339
foremans-nid008585-nhosts2-ngpu8-2023-10-31-044203.log GPT1T_2L 8 2023-10-31-044203 2023-10-31-044533 44203 44533 330
foremans-nid008272-nhosts4-ngpu16-2023-10-31-072717.log GPT1T_4L 16 2023-10-31-072717 2023-10-31-073131 72717 73131 414
foremans-nid008221-nhosts8-ngpu32-2023-10-31-083055.log GPT1T_8L 32 2023-10-31-083055 2023-10-31-083545 83055 83545 490
foremans-nid008196-nhosts16-ngpu64-2023-10-31-100336.log GPT1T_16L 64 2023-10-31-100336 2023-10-31-100848 100336 100848 512
foremans-nid008285-nhosts2-ngpu8-2023-11-01-200430.log GPT1T_2L 8 2023-11-01-200430 2023-11-01-200829 200430 200829 399
foremans-nid008193-nhosts8-ngpu32-2023-11-01-201702.log GPT1T_8L 32 2023-11-01-201702 2023-11-01-202131 201702 202131 429
foremans-nid008240-nhosts16-ngpu64-2023-11-01-210454.log GPT1T_16L 64 2023-11-01-210454 2023-11-01-211007 210454 211007 553
foremans-nid008321-nhosts2-ngpu8-2023-11-02-154438.log GPT1T_2L 8 2023-11-02-154438 2023-11-02-154949 154438 154949 511
foremans-nid008192-nhosts128-ngpu512-2023-11-04-001717.log GPT1T_128L 512 2023-11-04-001717 2023-11-04-002124 1717 2124 407

Minimal Working Example

  • As for 3:

    If we need to report the startup time for the DL applications, do we need to collect measurements using the actual Aurora NRE workloads or some small benchmarking test cases? For example, we can try to recreate the typical start-up scenarios, like library imports, and measure those separately as shown below.

    • I’ve been working on a library to help simplify this:

      ezpz
      Minimal library that handles the initialization of distributed training

    • Setup / Install:

      # launch job
      $ qsub -q EarlyAppAccess -A Aurora_Deployment -l walltime=2:00:00 -l select=4 -I
      
      # load frameworks
      $ module use -a /soft/modulefiles ; module --ignore_cache load frameworks
      $ module load frameworks/.2023.12.15.001
      
      # install `ezpz`
      $ git clone https://github.com/saforem2/ezpz
      $ cd ezpz
      $ mkdir -p venvs/aurora/2023.12.15.001
      $ python3 -m venv venvs/aurora/2023.12.15.001 --system-site-packages
      $ source venvs/aurora/2023.12.15.001/bin/activate
      $ python3 -m pip install -e .
      
      # print job info and define `launch` alias
      $ source ezpz/src/ezpz/bin/savejobenv
      ┌──────────────────────────────────────────────────────────────────
       [Hosts]:
           • x4415c6s5b0n0.hostmgmt2415.cm.aurora.alcf.anl.gov
      x4415c6s6b0n0.hostmgmt2415.cm.aurora.alcf.anl.gov
      x4415c6s7b0n0.hostmgmt2415.cm.aurora.alcf.anl.gov
      x4415c7s0b0n0.hostmgmt2415.cm.aurora.alcf.anl.gov
      └──────────────────────────────────────────────────────────────────
      ┌──────────────────────────────────────────────────────────────────
       [DIST INFO]:
           • Loading job env from: /home/foremans/.pbsenv
           • HOSTFILE: /var/spool/pbs/aux/297306.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov
           • NHOSTS: 4
           • NGPU_PER_HOST: 12
           • NGPUS (NHOSTS x NGPU_PER_HOST): 48
           • DIST_LAUNCH: mpiexec --verbose --envall -n 48 -ppn 12 --hostfile /var/spool/pbs/aux/297306.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov
           • Defining alias: launch: aliased to mpiexec --verbose --envall -n 48 -ppn 12 --hostfile /var/spool/pbs/aux/297306.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov
      └──────────────────────────────────────────────────────────────────
    • Launch with framework=pytorch, backend=DDP:

      # ----------------------------------------------------------
      # launch + startup on all workers with
      # • `framework` ∈ {`pytorch`, `tensorflow`}
      # • `backend` ∈ {`horovod`, `deepspeed`, `DDP`}
      # where `deepspeed` and `DDP` only available for `pytorch`
      # ----------------------------------------------------------
      $ launch python3 -m ezpz framework=pytorch backend=DDP
      [2023-12-19 13:33:24][INFO][dist.py:292] - Using device='xpu'
      [2023-12-19 13:33:26][INFO][dist.py:243] - Using DDP for distributed training
      [2023-12-19 13:33:26][WARNING][dist.py:104] - Using backend='ccl'
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 1 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 2 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 3 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 4 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 0 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 5 / 47
      [2023-12-19 13:33:35][INFO][__main__.py:49] - {
          "_target_": "ezpz.configs.TrainConfig",
          "framework": "pytorch",
          "backend": "DDP",
          "ds_config_path": null,
          "port": null,
          "seed": null,
          "use_wandb": true,
          "wandb_project_name": null,
          "precision": null,
          "ngpus": null
      }
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 9 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 10 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 11 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 7 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 8 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 6 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 12 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 13 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 14 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 15 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 18 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 19 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 20 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 21 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 22 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 23 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 24 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 25 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 26 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 27 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 30 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 16 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 17 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 28 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 32 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 33 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 36 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 37 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 38 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 39 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 43 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 46 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 29 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 47 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 31 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 34 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 35 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 42 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 41 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 44 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 45 / 47
      [2023-12-19 13:33:35][INFO][dist.py:307] - RANK: 40 / 47
      [2023-12-19 13:33:47][INFO][dist.py:415] - Setting up wandb from rank: 0
      [2023-12-19 13:33:47][INFO][dist.py:416] - Using: WB PROJECT: ezpz
      [2023-12-19 13:33:58][INFO][dist.py:448] - W&B RUN: [flowing-wood-8](https://wandb.ai/l2hmc-qcd/ezpz/runs/uya29gm5)
      [2023-12-19 13:33:58][INFO][dist.py:490] - Running on x4415c6s5b0n0.hostmgmt2415.cm.aurora.alcf.anl.gov
      [2023-12-19 13:33:58][INFO][dist.py:506] - Reading hosts from /var/spool/pbs/aux/297306.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov
      [2023-12-19 13:33:58][INFO][__main__.py:57] - Output dir: /lus/gecko/projects/Aurora_deployment/foremans/projects/saforem2/ezpz/src/ezpz/outputs/runs/pytorch/DDP/2023-12-19/13-33-17
      [2023-12-19 13:33:58][CRITICAL][dist.py:519] - 🚀 flowing-wood-8
      [2023-12-19 13:33:58][CRITICAL][dist.py:520] - 🔗 https://wandb.ai/l2hmc-qcd/ezpz/runs/uya29gm5
      [2023-12-19 13:33:58][CRITICAL][dist.py:521] - 📂/: /lus/gecko/projects/Aurora_deployment/foremans/projects/saforem2/ezpz/src/ezpz/outputs/runs/pytorch/DDP/2023-12-19/13-33-17/wandb/run-20231219_133354-uya29gm5/files
      [2023-12-19 13:33:58][INFO][dist.py:563] - Adding /lus/gecko/projects/Aurora_deployment/foremans/projects/saforem2/ezpz/src/ezpz/ezpz-pt-DDP-xpu.log to W&B artifact...
      [2023-12-19 13:33:58][INFO][dist.py:563] - Adding /lus/gecko/projects/Aurora_deployment/foremans/projects/saforem2/ezpz/src/ezpz/outputs/runs/pytorch/DDP/2023-12-19/13-33-17/__main__.log to W&B artifact...
      [2023-12-19 13:33:58][INFO][dist.py:563] - Adding /lus/gecko/projects/Aurora_deployment/foremans/projects/saforem2/ezpz/src/ezpz/outputs/runs/pytorch/DDP/2023-12-19/13-33-17/main_debug.log to W&B artifact...
      [2023-12-19 13:33:58][INFO][dist.py:563] - Adding /lus/gecko/projects/Aurora_deployment/foremans/projects/saforem2/ezpz/src/ezpz/outputs/runs/pytorch/DDP/2023-12-19/13-33-16/__main__.log to W&B artifact...

Citation

BibTeX citation:
@online{foreman2024,
  author = {Foreman, Sam},
  title = {⏰ {Starting} {Up} {Distributed} {Training} on {Aurora}},
  date = {2024-03-21},
  url = {https://samforeman.me/posts/AuroraGPT/startup-times/},
  langid = {en}
}
For attribution, please cite this work as:
Foreman, Sam. 2024. “⏰ Starting Up Distributed Training on Aurora.” March 21, 2024. https://samforeman.me/posts/AuroraGPT/startup-times/.