๐ณ l2hmc-qcd
Example: 4D SU(3)
Imports
# %load_ext autoreload
# %autoreload 2
# %matplotlib inline
import os
from pathlib import Path
from typing import Optional
import logging
import matplotlib_inline
import matplotlib.pyplot as plt
import torch
import yaml
import ambivalent
import numpy as np
import lovely_tensors as lt
lt.monkey_patch()
matplotlib_inline.backend_inline.set_matplotlib_formats('svg')
os.environ['CUDA_VISIBLE_DEVICES'] = '6'
os.environ['COLORTERM'] = 'truecolor;'
port = np.random.randint(5000, 6000)
os.environ['MASTER_PORT'] = f"{port}"
log_config = get_logging_config()
log = logging.getLogger('name')
log.setLevel("INFO")
from l2hmc.utils.dist import setup_torch
RANK = setup_torch(precision='float64', backend='DDP', seed=4351)
plt.style.use(ambivalent.STYLES["ambivalent"])
plt.rcParams['figure.figsize'] = plt.rcParamsDefault['figure.figsize']
def savefig(fig: plt.Figure, fname: str, outdir: os.PathLike):
pngfile = Path(outdir).joinpath(f"pngs/{fname}.png")
svgfile = Path(outdir).joinpath(f"svgs/{fname}.svg")
pngfile.parent.mkdir(exist_ok=True, parents=True)
svgfile.parent.mkdir(exist_ok=True, parents=True)
fig.savefig(svgfile, transparent=True, bbox_inches='tight')
fig.savefig(pngfile, transparent=True, bbox_inches='tight', dpi=300)
def plot_metrics(metrics: dict, title: Optional[str] = None, **kwargs):
from l2hmc.utils.rich import is_interactive
from l2hmc.configs import QUARTO_OUTPUTS_DIR
outdir = Path(f"{QUARTO_OUTPUTS_DIR}/plots-4dSU3/{title}")
outdir.mkdir(exist_ok=True, parents=True)
for key, val in metrics.items():
fig, ax = plot_metric(val, name=key, **kwargs)
if title is not None:
ax.set_title(title)
log.info(f"Saving {key} to {outdir}")
savefig(fig, f"{key}", outdir=outdir)
if not is_interactive():
plt.show()
def plot_metric(
metric: torch.Tensor,
name: Optional[str] = None,
**kwargs,
):
assert len(metric) > 0
if isinstance(metric[0], (int, float, bool, np.floating)):
y = np.stack(metric)
return plot_scalar(y, ylabel=name, **kwargs)
element_shape = metric[0].shape
if len(element_shape) == 2:
if isinstance(metric, torch.Tensor):
y = grab_tensor(torch.stack(metric))
else:
y = np.stack(metric)
return plot_leapfrogs(y, ylabel=name)
if len(element_shape) == 1:
if isinstance(metric, torch.Tensor):
y = grab_tensor(torch.stack(metric))
else:
y = np.stack(metric)
return plot_chains(y, ylabel=name, **kwargs)
if len(element_shape) == 0:
if isinstance(metric, torch.Tensor):
y = grab_tensor(torch.stack(metric))
else:
y = np.stack(metric)
return plot_scalar(y, ylabel=name, **kwargs)
raise ValueError
def main():
from l2hmc.experiment.pytorch.experiment import train_step
from l2hmc.configs import CONF_DIR
su3conf = Path(CONF_DIR).joinpath('su3-min-cpu.yaml')
assert su3conf.is_file()
# su3conf = Path('su3-min-cpu.yaml')
with su3conf.open('r') as stream:
conf = dict(yaml.safe_load(stream))
log.info(conf)
overrides = dict_to_list_of_overrides(conf)
ptExpSU3 = get_experiment(overrides=[*overrides], build_networks=True)
state = ptExpSU3.trainer.dynamics.random_state(6.0)
assert isinstance(state.x, torch.Tensor)
assert isinstance(state.beta, torch.Tensor)
assert isinstance(ptExpSU3, Experiment)
xhmc, history_hmc = evaluate(
nsteps=100,
exp=ptExpSU3,
beta=state.beta,
x=state.x,
eps=0.1,
nleapfrog=1,
job_type='hmc',
nlog=1,
nprint=2,
grab=True
)
xhmc = ptExpSU3.trainer.dynamics.unflatten(xhmc)
log.info(f"checkSU(x_hmc): {g.checkSU(xhmc)}")
plot_metrics(history_hmc.history, title='HMC', marker='.')
# ptExpSU3.trainer.dynamics.init_weights(
# method='uniform',
# min=-1e-16,
# max=1e-16,
# bias=True,
# # xeps=0.001,
# # veps=0.001,
# )
xeval, history_eval = evaluate(
nsteps=10,
exp=ptExpSU3,
beta=6.0,
x=state.x,
job_type='eval',
nlog=1,
nprint=2,
grab=True,
)
xeval = ptExpSU3.trainer.dynamics.unflatten(xeval)
log.info(f"checkSU(x_eval): {g.checkSU(xeval)}")
plot_metrics(history_eval.history, title='Evaluate', marker='.')
history = {}
x = state.x
for step in range(20):
log.info(f'TRAIN STEP: {step}')
x, metrics = ptExpSU3.trainer.train_step((x, state.beta))
if (step > 0 and step % 2 == 0):
print_dict(metrics, grab=True)
if (step > 0 and step % 1 == 0):
for key, val in metrics.items():
try:
history[key].append(val)
except KeyError:
history[key] = [val]
x = ptExpSU3.trainer.dynamics.unflatten(x)
log.info(f"checkSU(x_train): {g.checkSU(x)}")
plot_metrics(history, title='train', marker='.')
#
# for step in range(20):
# log.info(f"train step: {step}")
# x, metrics = ptExpSU3.trainer.train_step((x, state.beta))
# if step % 5 == 0:
# print_dict(metrics, grab=True)
return x, history
# main()
from l2hmc.experiment.pytorch.experiment import train_step
from l2hmc.configs import CONF_DIR
su3conf = Path(CONF_DIR).joinpath('su3-min-cpu.yaml')
assert su3conf.is_file()
# su3conf = Path('./conf/su3-min-cpu.yaml')
with su3conf.open('r') as stream:
conf = dict(yaml.safe_load(stream))
log.info(conf)
overrides = dict_to_list_of_overrides(conf)
ptExpSU3 = get_experiment(overrides=[*overrides], build_networks=True)
state = ptExpSU3.trainer.dynamics.random_state(6.0)
assert isinstance(state.x, torch.Tensor)
assert isinstance(state.beta, torch.Tensor)
assert isinstance(ptExpSU3, Experiment)
xhmc, history_hmc = evaluate(
nsteps=10,
exp=ptExpSU3,
beta=state.beta,
x=state.x,
eps=0.1,
nleapfrog=1,
job_type='hmc',
nlog=1,
nprint=2,
grab=True
)
xhmc = ptExpSU3.trainer.dynamics.unflatten(xhmc)
log.info(f"checkSU(x_hmc): {g.checkSU(xhmc)}")
plot_metrics(history_hmc.history, title='HMC', marker='.')
# ptExpSU3.trainer.dynamics.init_weights(
# method='uniform',
# min=-1e-16,
# max=1e-16,
# bias=True,
# # xeps=0.001,
# # veps=0.001,
# )
xeval, history_eval = evaluate(
nsteps=500,
exp=ptExpSU3,
beta=6.0,
x=state.x,
job_type='eval',
nlog=2,
nprint=5,
grab=True,
)
xeval = ptExpSU3.trainer.dynamics.unflatten(xeval)
log.info(f"checkSU(x_eval): {g.checkSU(xeval)}")
plot_metrics(history_eval.history, title='Evaluate', marker='.')
Citation
BibTeX citation:
@online{foreman2023,
author = {Foreman, Sam},
title = {๐ณ \textless Code\textgreater
l2hmc-Qcd\textless/Code\textgreater{} {Example:} {4D} {SU(3)}},
date = {2023-12-06},
url = {https://samforeman.me},
langid = {en}
}
For attribution, please cite this work as:
Foreman, Sam. 2023. โ๐ณ <Code>l2hmc-Qcd</Code>
Example: 4D SU(3).โ December 6, 2023. https://samforeman.me.